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SUMMARY

This paper considers all possible cases of flow of an ideal
compressible conducting fluid under specific assumption. Some partial
solutions of magnetohydrodynamics equations are obtained, which offer
svecific interest for the study of gradient winds and motions of cyclo-

nic character in an electricity-conducting atmosphere,

* *

For large-scale motions in a conducting atmosphere (ionosphere,
solar atmosphere) the effects of the force of gravity and the nonconserva-
tive deflection rotation force become determining. This is confirmed by
the similitude principle, according to which the action of external for-
ces is s0 much the greater as the scale of the event is greater. That is
why the inclusion of these forces during theoretical investigations of
large-scele events into the magnetohydrodynamics equations becomes indis-

pensable.
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In the present work, we shall seek partisl solutions of the magne-
tohydrodynamics equations for an ideal compressible conducting fluid in
the preeence of mass forces, when the velocity and the magnetic fields
are given in the form:

u=u(y), v=v(z), w="20 (1)
H,=H:(y), H,=Hy(z), H.=0. (2)

It is found that precisely such velocity and magnetic field forms
provide the possibility of studying large-scale gradient winds and motions
of a cyclonic character in a conducting atmosphere.

The system of magnetohydrodynamics equations hes, at above-indica~

ted assumptions, the form:

grad P’ = p(F — (vV)v) 4+ (IIV)il/4x, (3)
(v-grad p) =0, (4)
(VV)H — (iiV)v = 0, (5)

where P/ =P +I*/8n is the total pressure of the medium, P is the density,
F = 2hw)i + (—2%u)j + (—g —2M, v)kie the mass force, representing the sum
of tre force c¢f <ravity end oi the deflecting rotation force; A; A; are the
vector cormponentz of the angular velocity A.

Below, we shall assume, everywhere, that the first derivatives
from u, Vv, H, and Hy,always exist. The case, when one of these derivati-
ves converts to zero, offers no significant interest, and that is why we
shall not consider it., Thus, we postulate :

du dv dH ., d_H_'L

"—d'!'/-?&o, E#O, "E!'/—?‘;O, I # 0. ‘ (6)

In the coordinate form the equations (3), (4) and (5) take the

form
o du ) H, oH,
— B 3 — ') 7
el e im0y )
op’ dv\ K H, 8H,
_0?_— - (2k3u+u dz )+ 4 Oz (8)

oo/o.




adi/ = —p(g+ 2Mv), 9)
u%—+v%=0, (10)
%’.j:_x_ﬂ,,‘;_‘;=o, | (11)
I ,

: L’a;:’—ﬂx z; =0 (12)

Taking into account the condition (6), we may obtain from (11)

and (12) the following ecualities :

- —
v

u=qall, v=aK, v=aH, (13)

where @ is an arbitrary constant,
Eliminating the pressure P' from the equations (7)~— (9), and ta-
king into account the correlation (13), we shall have after simple trans-

forrations :

9 P 0

(2}\,3 + —i\ w-- ﬂ——(g—l— 2Mv) g0 , (14)
r / Uz oy
du i) '
‘)}’n——+(g+2;qv) "‘—""‘(27\.3 '6_>U'—0%—= , (15)
v 0% (0 6u ( av
p(u 5~V 0y2>+\ \g — —— 3+ \u
1 v 0%u

= Zna? (u o2 y? ) (16)

(2 au) — {2,
Multiplying (14), (15) and (16 respectively by |Za—3-]v, \“"3*072) “'
—g—2,v and adding, we shall have as a result:

o=y, (17
where -

B—in—u/%a—!———\ 62")‘

oy J’

(v3 'u""”)‘
ay® 2% )

The expression (17) may take place in one of the following cases:
1) either Y =0, then ? too must become zero, for in the opposite

cace the density y would also become zero;

2) orY# 0, then P;é 0.




l1.~-Let us investigate first of all the motion for the second
case. Since Y 3 O and P % 0, the density p ie deterrined directly from
the ecquation (17):
p=v/B=o0l(zy). (18)

Consequently, f does not depend on 2z, Then, from the equations
(14), (6) and (10), we shall have: gp /6y = 0; dp/dz =vu. Therefore, in the
case considered the medium must be viewed as incompressible., Taking into
account the conditions (6), we shall find from the equation (15) : A, =0,
that is, the considered motion is possible only at the pole. Then the equa-
tions (16) and (18) become unconditional and we shall obtain for the den-
sity P:

A
rs

p= .
4aal

Substituting « from (1¢) into (1%), we rh2ll find:
v = i1 / Vmp. ‘ (20)
Ir this case thne ecuctions (7) - (9) take the form:
1 op' 1 P’ 1 op’

_p_.a—x=2/\,31)’ —p- 0y =—2k3u, F az =—g. (2;)

Hence we determine the pressure :

p, . ;v:!
2au?

S (vde —udy)— ga2z+Po', (22)

7

where P,' is an arbitrary constant.

In the absence of mase forces (Az=0; g=0), the obtained equa-
ticn coincides with the well known stationary solution of magnetohydrody-
namics [1,2]. It may be shown that gradient wind must exist at the pole
under the action of mass forces, that is, a wind blowing along the isobar.
Indeed, multiplyin~ the first of the equations (21) by AP’/dy, and the

second »y —gP'/dx and adding, we obtain:
P’ ar
u T+ —-——=
dx ay

This equation exprerses the condition of velocity vector perpen=-
diculerity to gradiernt of pressure, But, in the case of Plane motion, the

pressure gradient is tne vector, directed along the normal to isobars.




Consequently, in the case under consideration the velocity vector is
d*rected along the isobar.

Note that formula (21) provides the possibility of computing
the gradient wind velocity by the gradient of pressure, For example, if
we consider that the axis x is parallel to the wind direction, the second
of the equations (21) may be rewritten in the form:

1 opP’
p on

2V[7»3|=]

where V is the wind velocity, n is the direction of the normal to the
isobar. Expressing, as an example for the ionosphere, as the vertical
component at the pole of the Earth's rotation vector through the value

of this vector, and taking into account that at the pole the latitude

@ == 90°, we shall have :

|as|==Asing =4 (for the Northern hemisphere)

and consequentl
a v V=G|, (23)

where G is the value of pressure grsdient., ote that formula (23) can
be generalized for an arbitrary latitude @, provided we assume at the
outset that the value of-l%lyv'in the initial equations (7)— (9) is
small by comparison with the term -7pg. In that case we shall obtain for
the gradient wind :

V= G/2\sing. (24)

The first two eguations (21) in vectorial form may be written
as follows :

where

whence it follows that the vectors P and @ are equal in magnitude and
have opposite directions. In the case of the ionosphere, taking into
account that in the Northern hemisphere the deflecting force F is

directed to the right , provided one looks in the direction V¥V of the
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wind velocity, the vector @ 1is directed to the left and since the pres-
sure in the direction @ veries from greater to lesser; thus, to the right
of V we have a high pressure region and to the left -~ 2 low pressure re:ion.
The pattern is opposite in the Southern Hemisphere. This result coincides
with the "Byuys - Ballo" law [3]*

Therefore, the solution found for the case Y 3k 0 Pq‘: 0 points

to the poseibility of existence of gradient wind in a conducting atmosphere.

2.=-Let us now pass to the investigation of motion in the case
Y =0, P = 0. The equating of Y and ﬁ to zero provides two conditions :

VRSN Y -

v de2 u dy?’ v

Two cases must be distinguished here 1) Ay =0, 2) 2As+ dv/dz = 0.

Let us now examine at further length the first case : from the
ecuations (14) — (16), tzking into account the continuity equation (10),
and Xl =0 we may obtain the following ecualities :

(o (2l e (Z+)P=0
oz / 0x s dy dy  odx/ 0z )
Hence: a) either go/dz =0, dn/dy=0,0r b) gu/dy--dv/dz =20, 8o /dz = 0.
Le* ur consider the case a). TFor u, 4 we shall have
u=—Q+& v=Qzr+n, (26)
where O 3 n are arbitrary constants.

:rom the equation (13) we shall find for the magnetic field:
= —ny -+ &1, Hy=nrLtm, . (27)

where n=Q/0, & =E§/a, w=n/a. Assuming &= Qq, n= —Qq, Where qp, q
are other arbitrary constants, we shall obtain from (26) and (27)
p=—Q—a) 1=0c—q), w=0, (28)
He=—n(y—q), li=n(z—q), H =0.
It follows from these formulas thet the =olution found represents
the rotation of a conducting fluid, taking place at the pole with a cons-
tsnt an~ular velocity Q about a center with coordinates (Zo= qi; yo = qq;

ZQ=Z).

* [in transliterationl




Substituting the values of u and v into the ecuations (14), (1%),
(16) and (10), we shsll determine the density p:

0 = poe=o©), (29)

where (o) is an arbitrery function of its argument;

2, po

Formula (29) shows that the density f varies with height; at the
same time, by proper assortment of the arbitrary function &(6) it is always
possible to obtain that the density vary in a desirable fashion, for example,
in correspondence with the true conditions in the conducting atmosphere.

Substituting p,u, v, /lx and Hy into the equations (7), (8) and (5),
we shall find the pressure P!':

\

P=po {W(o)do— o {e— )t W — @) £ (0)

vrere W(g) = ¢ %0 P 1ir a conctant.

T+ follows from formulas (28) and (29) that the isobars constitute
in every horizontal plane of current lines, just as do the magnetic lines
of force, concentric circles with center at the point (io,yb, zo). Conse-~
quently, the solution found points to the possibility of motion of cyelonic
character, taking place at the pole in a conducting atmosphere; at the same
time in case of minimum, a stationary magnetohydrodynamic cyclone will be
present at the center of isobars, and in case of maximum an anticyclone
(see [4]).

In the case b) the density is a constant cuantity. For the determi-
nation of u and v, the single condition imvosed to the velocity field,

will be :
v/ drt +-vo =0, d*uldy*4 vu=20_0,

where ¥ is a con-tant,
At v<<(0 we have the solution:
v = C,e“:”‘ + Cor=3 V5 = Die v — Dze"’_“"y.

At v=0
v=az+0b u=cy-+d.
At v.-J

v = Ay cos Yvz -+ Az sin Yvz, u = By cos Yvy + By sin vy,




where C(, Cs, D1, Do, a,b,¢,d, Ay, 42, By, > gre constants.

Depending upon the boundary conditions, only one solution for u
and V may at all times be selected from the above solutions. Upon finding
u and ¢, we shall determine H, and H, from the formulas (13), and the
pressure P' from the equations (7), (8) and (9).

Let us now examine the second case when dp/dx 4 2i; = 0. Hence,
v= —2Az+7m, and then we shall find from (25) u=ay-+E&

Assuming a= —Q = 42k, E=Qq, 1= —Qq, n =Q/a, & =t/a, Mm=n/aq,
we shall obtain for the values of the velocity and of the magnetic field
formulas analogous to (28)

u=—Qy—¢q), v=02&—q), w=0,
Hi=—n(y—gq), Hy=n(z—y), H.=0,
but with the difference, however, that here Q will no longer be an arbi-
trary constant, but a guantity linked with the latitude constant As(—Q = 2As),
which, obviously, limits the motion cuite considerably. In this case we
find from (14) and (10), that Jdp/dy =0, dp/dz =0, and from the equation
(1%) we shall obtain )\1 = 0. The ecuation (16) is fulfilled automatically.

Consecuently, ? emerges as an arbitrary function of gz:
p=rp(2). (31)
The pressure is found again by formulas (7), (8), (9):

{(z— @)2+(y — 92)% —SpgdZ+Po’. (32

Zo

P =—

8na?

Hence it follows that in horizontal planes there are only "magnetic
isobars", consisting of circles with center at the point (ql, 9 zo).

This is the way we obtain a motion of cyclonic character, linked
with the latitude constant ¢. According to Fridman terminology [5], such
motions are called "geoanticyclon" in standard meteorology.

Summing up, we conclude, that all possible cases of ideal compressible
conducting fluid flow have been considered under the assumptions made at
the outset.

In concluding the author expresses his gratitude to D, V, Sharikadze

for discussing the work.
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